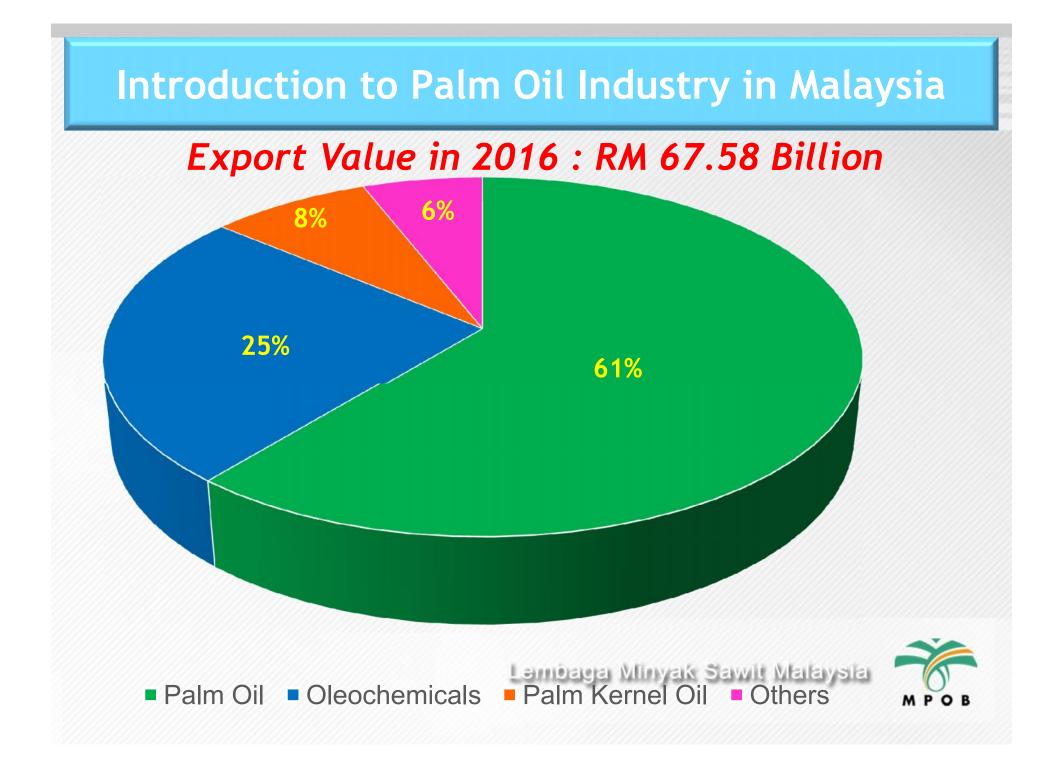
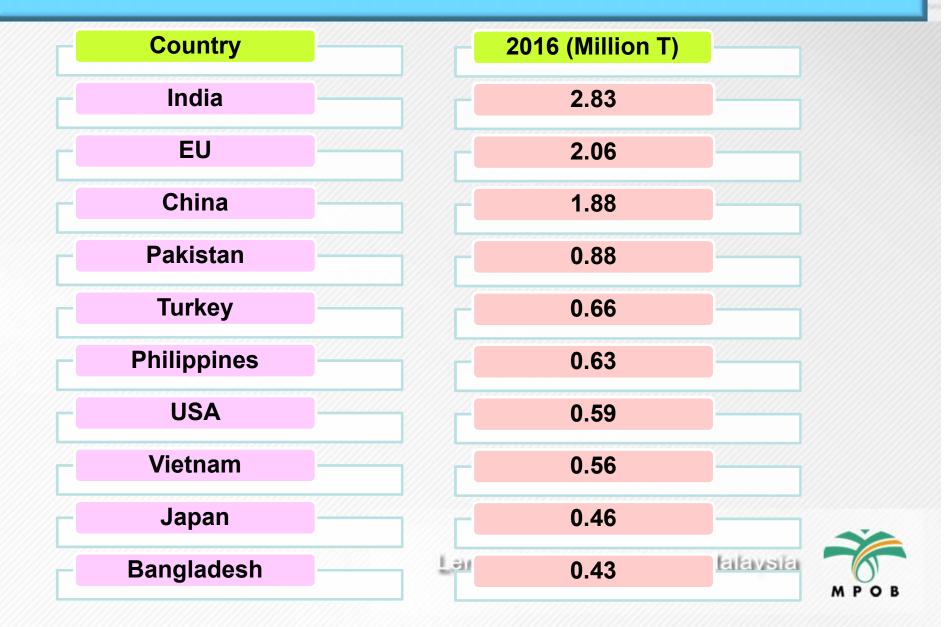

DGF Symposium on MCPD Esters and Glycidyl Esters, 20 – 21 June 2017, Berlin, Germany

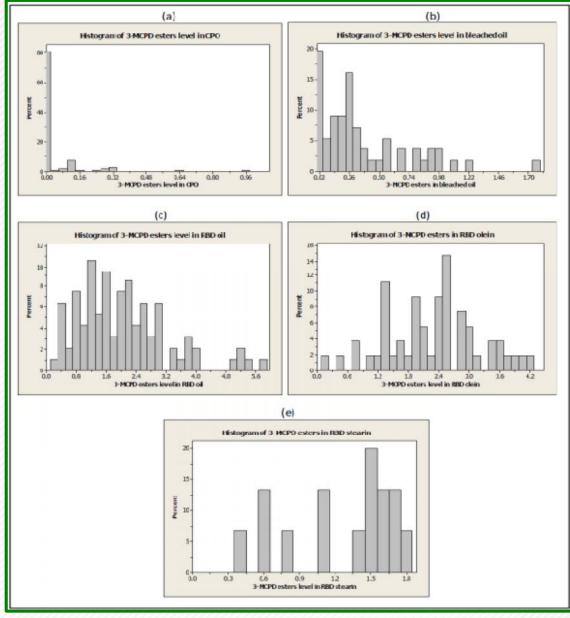

STUDY OF 3-MCPD ESTERS AND GLYCIDYL ESTERS IN MALAYSIA

Raznim Arni Abd. Razak Product Development & Advisory Services Division Malaysian Palm Oil Board (MPOB)


Presentation Outline

Major Export Destinations, 2016

Background of 3-MCPD and GE research in Malaysia

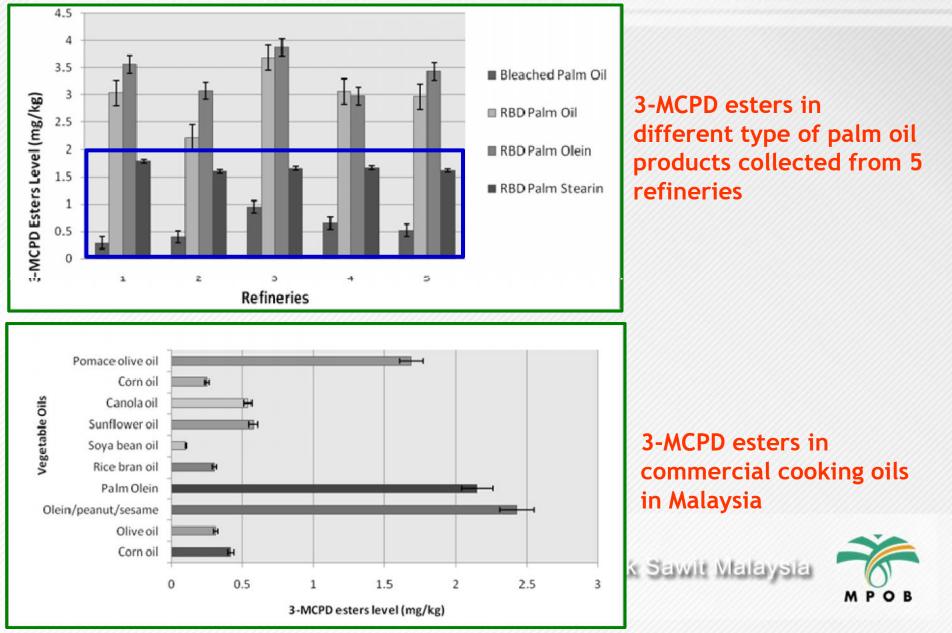

- 2009 MPOB started research works on 3-MCPD esters formation in refined palm oil
- 2010 adopted and established analysis of 3-MCPD esters using BfR Method 008
- 2010 to 2013 carried out surveys on commercial palm oil products and pilot plant trials to mitigate the formation of 3-MCPD esters during refining of palm oil
- 2014 adopted and established analyses of 3-MCPD esters and GE using AOCS Method Cd 29a
- 2016 identify technologies provider for mitigation of 3-MCPD esters and GE at the mills and refineries
- 2017 mitigation study on the formation of 3-MCPD esters and GE on industrial scale

Analytical Methods

Method	Analyte	Description
DGF CIII 18 (09) B	Bound 3-MCPD esters	 Alkaline / H⁺ and chloride GC-MS Indirect method
BfR 'Method 8'	Bound 3-MCPD esters	 Acidic transesterification GC-MS Indirect method
BfR 'Methods 9 and 10'	Bound 3-MCPD esters	 Alkaline / H⁺ chloride free GC-MS Indirect method
AOCS Official Method: (a) Cd 29a-13 (b) Cd 29b-13 (c) Cd 29c-13	Bound 2- and 3-MCPD esters and Glycidyl esters	 Acidic / Alkaline GC-MS Indirect method
ADM	Bound 3-MCPD esters and Glycidyl esters	LC-MS/TOFDirect method

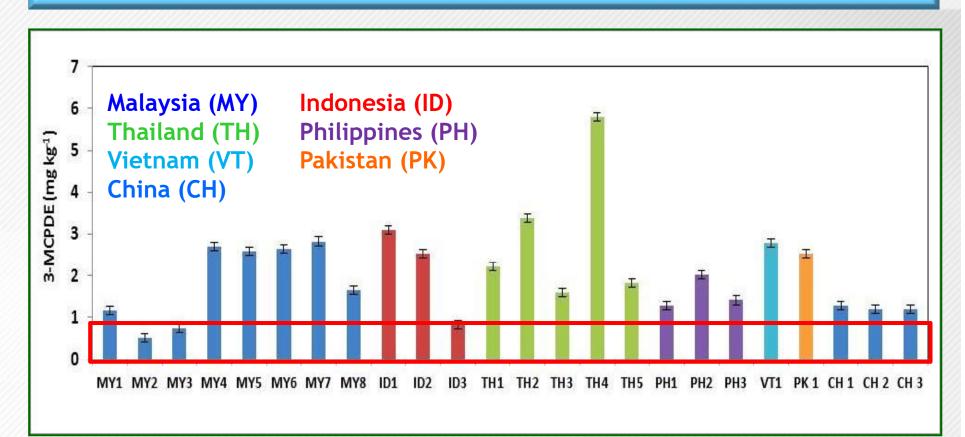
Survey : 2010

CPO showed the lowest 3-MCPD ester values (< 0.25 to 0.9 mg/kg)

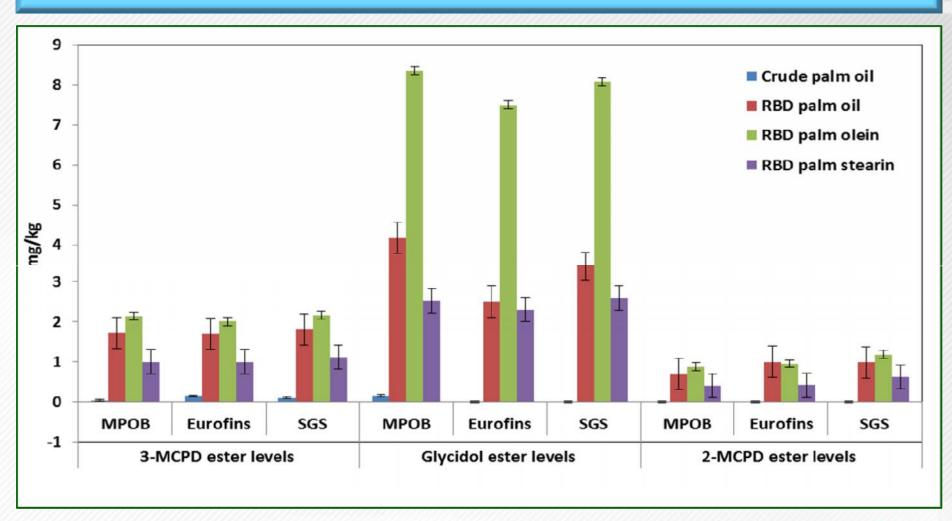

RBDPO showed the highest 3-MCPD ester values (< 0.25 to 5.8 mg/kg)

Graph shows percentage distribution of 3-MCPD esters in 324 samples of palm oil products in Malaysia

inyak Sawit Malaysia


Survey : Palm oil products and commercial oils

Type of cample	3-MCPD esters range (mg/kg)		
Type of sample	2009	2012	
Crude Palm Oil (<i>n</i> = 141)	< 0.25 - 0.9655	< 0.25 - 0.5	
RBD Palm Oil (<i>n</i> = 115)	< 0.25 - 5.77	< 0.25 - 3.99	
BD Palm Olein (<i>n</i> = 50)	< 0.25 - 4.129	-	
BD Palm Stearin (<i>n</i> = 15)	0.354 - 1.787	_	


Survey : 2014

Cooking oils (palm olein) from Asian countries

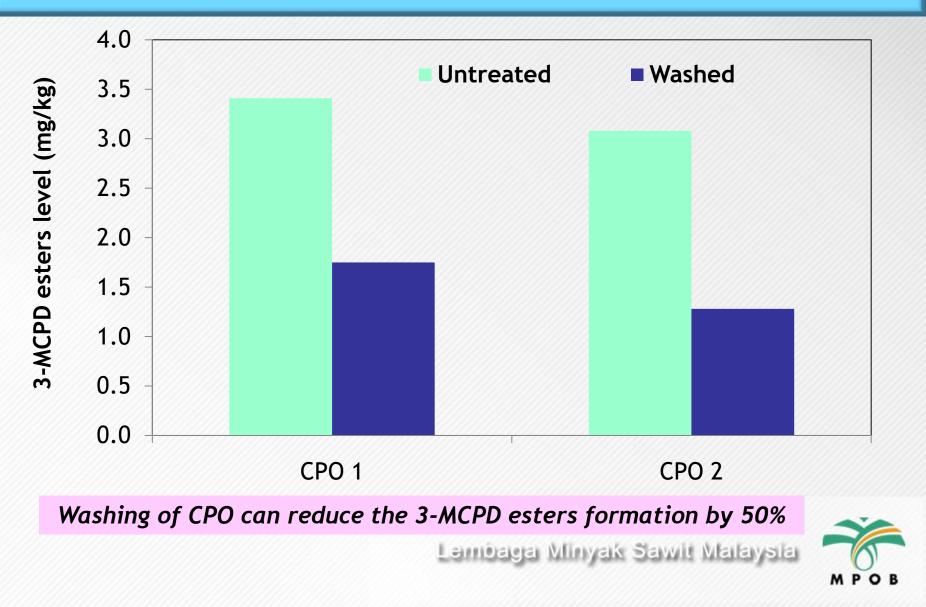
Cross-check analyses

Total chlorine levels in palm oil products

Sample	Average value (ppm)	Range (ppm)	
Crude palm oil	7.29 (± 5.9)	2.62 - 15.58	
RBD palm oil	2.46 (± 0.9)	1.08 - 3.51	
RBD palm olein	2.30 (± 1.1)	1.21 - 3.72	
RBD palm stearin	1.89 (± 1.1)	0.15 - 3.10	

Pilot plant trials

 Acid degumming followed by bleaching causes formation of 3-MCPD esters in bleached oils


66

- FFA and DAG are not directly correlated to the formation of 3-MCPD esters
- High deodorization temperature led to high formation of the esters

Effect of water washing

Effect of FFA and DAG on 3-MCPD esters

Sample	FFA (%)	DAG (%)	3-MCPD esters (ppm)
CPO 1	0.4	3.5	1.62
CPO 2	58.0	7.9	< 0.25
CPO 3	2.8	3.9	0.69

FFA and DAG were not directly correlated with the 3-MCPD esters in heat treated CPO

Effect of FFA and DAG on 3-MCPD esters

Sample	FFA (%)	DAG (%)	3-MCPD esters (ppm)
СРО	3.5	6.1	4.76
E 3	7.8	13.7	4.02
E 6	6.7	12.2	3.44
E 9	6.5	21.6	3.21
E 12	7.8	22.4	2.48
E 24	7.1	25.5	2.48

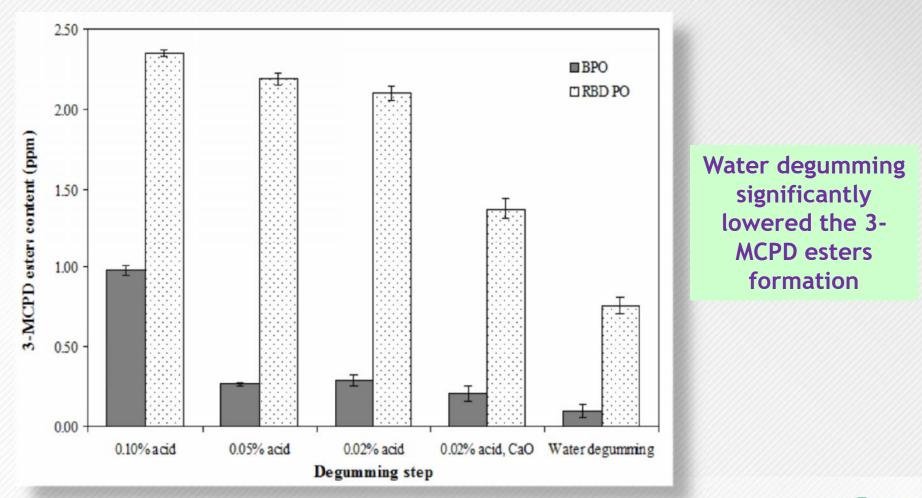
Inconclusive correlation between DAG and 3-MCPD esters in enzymatically hydrolysed and heated CPO

Effect of DAG on 3-MCPD esters and GE

Sample	3-MCPD esters (ppm)	Glycidyl esters (ppm)
Pure CPO TAG (0.8% DAG)	Not Detected	Not Detected
TAG + 2% Polar (from column chromatography)	4.06	1.77
TAG + PP (2%)	2.34	4.68
TAG + PP (10%)	2.72	15.86
TAG + OO (2%)	1.41	2.52
TAG + OO (8%)	1.74	6.44

Direct correlation between DAG and GE in heated CPO added with pure DAG

Lembaga Minyak Sawit Malaysia


PP = 1,3-*dipalmitoylglycerol* ; *OO* = 1,3-*dioleoglycerol*

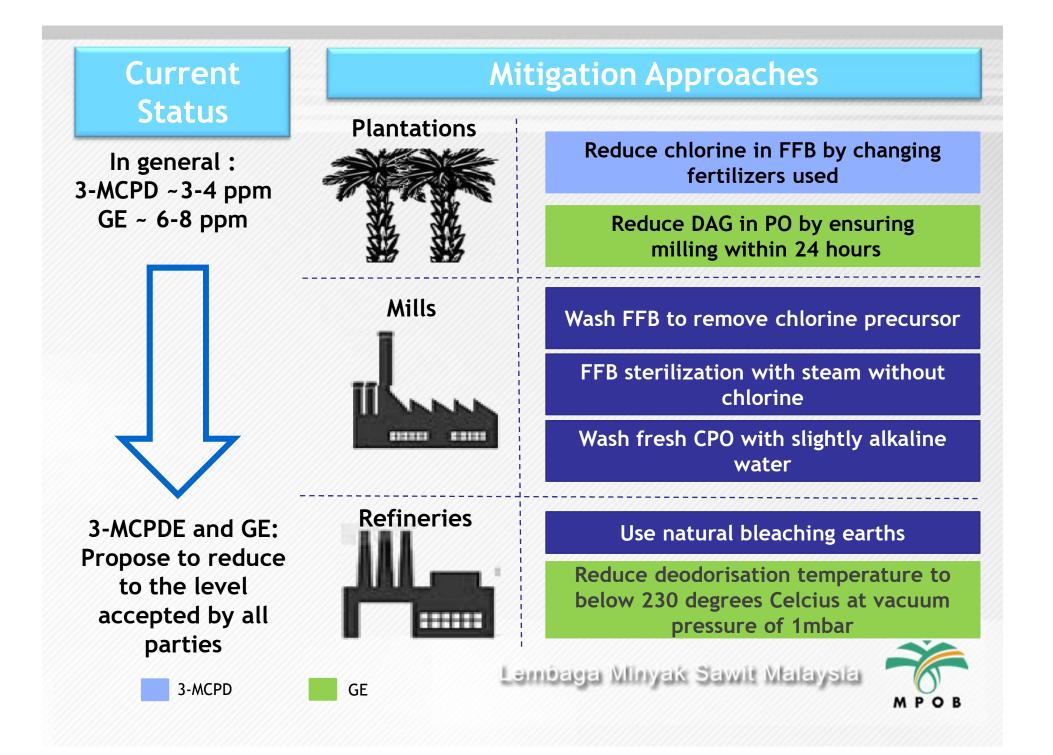
Recommendations from pilot trials

- Low FFA and DAG levels in crude palm oil (CPO)
- **Rinse CPO** prior to refining
- Combine acid degumming with water degumming
- Use bleaching clay with the lowest chlorine content, while the acidity (pH) should be almost neutral to alkaline
- Reduce deodorization temperature from 260 °C to 230 °C
- Post refining under mild conditions lowers GE content

Effect of water degumming

Summary from pilot plant trials

Process	3-MCPD esters content (ppm)				
FIOCESS	Max	Min	Average	± SD	
Standard					
Acid activated $(n = 7)$	3.89	2.18	2.82	0.57	
Natural (<i>n</i> = 7)	2.67	1.60	2.21	0.37	
Water Degumming					
Acid activated $(n = 3)$	1.50	0.49	0.91	0.52	
Natural (<i>n</i> = 6)	0.76	0.25	0.49	0.22	



Tackling the 3-MCPDE & GE issues in a nutshell

Oil Palm Supply Chain

Industrial trials

- In 2017, the Malaysian Government has allocated a special research grant to improve the quality and safety of the palm oil products focus on 3-MCPD esters and GE mitigation
- Identify technology providers from within the industry as well as oversea
- Collaboration between technologies identified with selected milling and refinery partners
- **Dynamic monitoring** of 3-MCPD esters and GE during trials
- **Review outputs** from the trials and share best options with the whole industry for possible adoption
- Preliminary data showed very encouraging results

Malaysian Patents

- Sime Darby Process of manufacturing crude palm oil fractions containing virtually no 3-MCPD esters
 - Fractionation of CPO with low FFA (1.5%) and DAG (5.5%) contents
 - Deodorized under normal conditions to obtain 3-MCPD esters of < 0.5 ppm
- Sime Darby Process of refining CPO product
 - Pre-treatment of CPO to remove gums, bleaching with earth and silica material
 - Deodorization not more than 240°C
 - To obtain product of < 1 ppm 3-MCPD esters

• Loders Croklaan B.V.

- Treatment of crude oil with acid, bleaching with non-activated clay, deodorization at 180 - 255°C
- To obtain product of < 2 ppm 3-MCPD esters
- Possible steps include using enzymes or base in the process

Malaysian Patents

- Loders Croklaan B.V. Method for treatment of vegetable oil
 - For removal of Glycidyl esters using acid activated clay and deodorization at lower temperature (< 200°C)
 - Reduction of 95% in Glycidyl esters content
- University Putra Malaysia (UPM)
 - Refining process of palm oil through water washing, centrifugation, acid degumming, followed by natural earth, silicate bleaching and deodorization at 260°C
- Malaysian Palm Oil Board (MPOB) Process of reducing 3-MCPD esters
 - To reduce acidity and chloride contents in CPO during extraction process
 - Removal of chlorides during milling process enables refining to be carried out with less modification
 - Acidity due to vegetative materials during milling process has to be removed as much as possible
 - This process will be initiated during milling to study implementation at commercial scale

The Way Forward

- Quality of CPO and refining process will be the key to mitigate the formation of 3-MCPD esters and GE mandate for higher quality CPO
- Ensure palm oil products produced in Malaysia contain minimum levels of 3-MCPD esters and GE - comply with the importing countries
- **By 2019** will **establish Code of Practice** for the reduction of 3-MCPD esters and GE based on industrial trials carried out in 2017 and 2018
- Continuous advocacy plan and engagement with stakeholders

Acknowledgement

- Malaysian Government
- Director General of MPOB and MPOB's Top Management
- Director of Product Development & Advisory Services
 Division
- 3-MCPD esters Research Team

See you at PIPOC 2017

TREASURING THE PAST CHARTING THE FUTURE

14-16 NOVEMBER 2017

Kuala Lumpur Convention Centre, Kuala Lumpur, Malaysia

Book your place now to make sure you will be one of them in 2017!

Follow and Like Us: Follow and Like Us: Malaysian Palm Oil Board

Raznim Arni Abd. Razak E-mail: raznim@mpob.gov.my

MPOB

Thank you Lambaga Minyak Sawit Malaysia